Attributed Social Network Embedding

نویسندگان

  • Lizi Liao
  • Xiangnan He
  • Hanwang Zhang
  • Tat-Seng Chua
چکیده

Embedding network data into a low-dimensional vector space has shown promising performance for many real-world applications, such as node classification and entity retrieval. However, most existing methods focused only on leveraging network structure. For social networks, besides the network structure, there also exists rich information about social actors, such as user profiles of friendship networks and textual content of citation networks. These rich attribute information of social actors reveal the homophily effect, exerting huge impacts on the formation of social networks. In this paper, we explore the rich evidence source of attributes in social networks to improve network embedding. We propose a generic Social Network Embedding framework (SNE), which learns representations for social actors (i.e., nodes) by preserving both the structural proximity and attribute proximity. While the structural proximity captures the global network structure, the attribute proximity accounts for the homophily effect. To justify our proposal, we conduct extensive experiments on four real-world social networks. Compared to the state-of-the-art network embedding approaches, SNE can learn more informative representations, achieving substantial gains on the tasks of link prediction and node classification. Specifically, SNE significantly outperforms node2vec with an 8.2% relative improvement on the link prediction task, and a 12.7% gain on the node classification task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Steganalysis of embedding in difference of image pixel pairs by neural network

In this paper a steganalysis method is proposed for pixel value differencing method. This steganographic method, which has been immune against conventional attacks, performs the embedding in the difference of the values of pixel pairs. Therefore, the histogram of the differences of an embedded image is di_erent as compared with a cover image. A number of characteristics are identified in the di...

متن کامل

A Novel Weighted Distance Measure for Multi-Attributed Graph

Due to exponential growth of complex data, graph structure has become increasingly important to model various entities and their interactions, with many interesting applications including, bioinformatics, social network analysis, etc. Depending on the complexity of the data, the underlying graph model can be a simple directed/undirected and/or weighted/un-weighted graph to a complex graph (aka ...

متن کامل

Accelerated Attributed Network Embedding

Network embedding is to learn low-dimensional vector representations for nodes in a network. It has shown to be effective in a variety of tasks such as node classification and link prediction. While embedding algorithms on pure networks have been intensively studied, in many real-world applications, nodes are often accompanied with a rich set of attributes or features, aka attributed networks. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.04969  شماره 

صفحات  -

تاریخ انتشار 2017